M E T A L O P T I C S O V E R V I E W

O P T I C S
OUR MISSION

We are proud to make contributions to some of the big scientific developments of the new millennium.

We develop components for experiments with a diameter of 26,695 meters on an energy level of 50 TeV on a distance of 14 billion light years ... or just a few nanometers.

Projects and products for our customers in industry and science benefit from our experience.

OUR PROFESSION IS PRECISION
An extensive range of sophisticated diamond-cutting technologies is available, for single piece as well as for series production.

Technical data:

- **Typical dimensions**
 - 50 mm x 50 mm or 500 mm x 500 mm
 - 50 mm up to 500 mm dia.

- **Surface figure**
 - Approx. 0.1 μm over 100 mm

- **Surface roughness**
 - Ra approx. 1 nm - 5 nm

- Optionally coatings available.
- Other specifications available on special order.
- Custom dimensions available on special order.

*Vary with the material involved and its structural rigidity.

Materials

- Oxygen-free copper (OFHC.CU)
- Aluminum
- Aluminum alloys (6082 and 6061 preferred)
- Brass
- Plastics (usually PMMA)
- Crystalline materials
- All nonferrous metals
An extensive range of sophisticated diamond-cutting technologies is available, for single piece as well as for series production.

Technical data:

Radii ranges
- from approx. 5 mm to infinite (concave or convex surfaces)

Typical dimensions
- 50 mm x 50 mm or 500 mm x 500 mm
- 50 mm up to 500 mm dia.

Surface figure
- Approx. 0.1 μm over 100 mm*

Surface roughness
- Ra approx. 1 - 5 nm*

Other specifications available on special order. Optionally coatings available.

*Vary with the material involved and its structural rigidity.

Materials
- Oxygen-free copper (OFHC-CU)
- Aluminum
- Aluminum alloys (6082 and 6061 preferred)
- Brass
- Plastics (usually PMMA)
- Crystalline materials
- All nonferrous metals
Three-axes turning technology

Our advanced, three-axes turning technology allows us to turn optics having any symmetric geometric shape.

Technical data:

- Typical dimensions
 - on-axis Ø 50 mm up to Ø 500 mm
- Surface figure
 - Approx. 0.5 µm over 100 mm*
- Surface roughness
 - Ra approx. 2 - 15 nm*

- Optionally coatings available.
- Other specifications available on special order.
- Custom dimensions available on special order.

*Very with the material involved and its structural rigidity.

Materials

- Oxygen-free copper (OFHC-CU)
- Aluminum
- Aluminum alloys (6082 and 6061 preferred)
- Brass
- Plastics (usually PMMA)
- Crystalline materials
- All nonferrous metals
Technical data:

- **Widths across flats**
 - Approx. 10 mm to 500 mm

- **Surface figure**
 - Approx. \(\lambda/10 \) in the visible spectral region

- **Machining tolerances**
 - Indexing error, approx. 5 arcsec
 - Pyramidal error, approx. 5 arcsec

- **Surface roughness**
 - Ra approx. 1 - 5 nm*

- Optionally coatings available.
- Other specifications available on special order.
- Custom dimensions available on special order.

*Vary with the material involved and its structural rigidity.

Materials

- Oxygen-free copper (OFHC-CU)
- Aluminum
- Aluminum alloys (6082 and 6061 preferred)
- Brass
- Plastics (usually PMMA)
- Crystalline materials
- All nonferrous metals

Raster-scanning polygons

We manufacture polygons having arbitrary pyramidal angles. We can also machine varying pyramidal angles on individual polygons.
Pyramidal mirrors

Ellipsoids

Masters

Toroids of all types

Roof mirrors

Conical mirrors

Bifocal paraboloidal mirrors

Waxicons/axicons

Stepped mirrors

Chopper blades

Scraper mirrors

Cylindrical mirrors

NEW!

Optical surfaces out of steel without polishing. Ultrasonic assisted diamond-turning on steel parts.

Other special shapes are available on special order.

We look forward to receiving your inquiry.

Figuring accuracy and surface roughness varies with:

- reflective-surface dimensions
- the types of surface figures specified
- the materials employed

Materials

- Oxygen-free copper (OFHC-CU)
- Aluminum
- Aluminum alloys (6082 and 6061 preferred)
- Brass
- Plastics (usually PMMA)
- Crystalline materials
- All nonferrous metals
Technical data:

- Axes stroke
 - X 900 mm / Y 350 mm / Z 200 mm
- Surface figure and roughness
depending on design and dimension

Materials

- Oxygen-free copper (OFHC-CU)
- Aluminum
- Aluminum alloys (6082 and 6061 preferred)
- Brass
- Plastics (usually PMMA)
- Crystalline materials
- All nonferrous metals
Freeform surfaces

With the dynamic-axis technology even non-rotation symmetric geometries are possible.

An extensive range of sophisticated diamond-cutting technologies is available, for single piece as well as for series production.

Materials
- Oxygen-free copper (OFHC-CU)
- Aluminum
- Aluminum alloys (6082 and 6061 preferred)
- Brass
- Plastics (usually PMMA)
- Crystalline materials
- All nonferrous metals
Different types:
- Microlenses
- Grids
- Fresnel- optics
- ...

Manufacturing technologies:
- Diamond- turning
- Diamond- milling
- Diamond- planing
- Structure size down to submicron area

Materials
- Oxygen-free copper (OFHC-CU)
- Aluminum
- Aluminum alloys (6082 and 6061 preferred)
- Brass
- Plastics (usually PMMA)
- Crystalline materials
- All nonferrous metals
Coatings for CO₂-laser optics

<table>
<thead>
<tr>
<th>Coating type</th>
<th>Code</th>
<th>Reflectivity [%]</th>
<th>Phase Retardation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>λ = 10.6 μm</td>
<td>45° (S)</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>MO</td>
<td>97,7</td>
<td>98,2</td>
</tr>
<tr>
<td>Protected Gold</td>
<td>PG</td>
<td>99,0</td>
<td>99,2</td>
</tr>
<tr>
<td>Unprotected Gold</td>
<td>AU</td>
<td>99,2</td>
<td>99,4</td>
</tr>
<tr>
<td>Hard Gold</td>
<td>HG</td>
<td>98,8</td>
<td>98,7</td>
</tr>
<tr>
<td>Enhanced Coating</td>
<td>EC</td>
<td>99,6</td>
<td>99,2</td>
</tr>
<tr>
<td>Super-Enhanced Coating</td>
<td>SEC</td>
<td>99,8</td>
<td>99,9</td>
</tr>
<tr>
<td>Phase-Retarding Coating</td>
<td>PRC</td>
<td>99,5</td>
<td>99,1</td>
</tr>
<tr>
<td>Zero-Phase-Shift Coating</td>
<td>ZPC</td>
<td>99,8</td>
<td>99,9</td>
</tr>
</tbody>
</table>

Other coatings

<table>
<thead>
<tr>
<th>Coating Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced Coating (YAG)</td>
<td>ECY</td>
<td>High-reflecting coating for use with Nd: YAG-lasers (1.064 μm)</td>
</tr>
<tr>
<td>Protected Aluminum</td>
<td>PAL</td>
<td>Protected Aluminum coating primarily for use in the VIS and IR spectral regions*</td>
</tr>
<tr>
<td>Unprotected Aluminum</td>
<td>AL</td>
<td>Unprotected, pure-aluminum coating</td>
</tr>
<tr>
<td>Enhanced Aluminum</td>
<td>EAL</td>
<td>Provides enhanced reflectivity in the UV / VIS due to ist multi-layer dielectric overcoating*</td>
</tr>
<tr>
<td>Protected Silver</td>
<td>PAG</td>
<td>Silver with a protective dielectric overcoating*</td>
</tr>
<tr>
<td>SiO₂</td>
<td>SiO2</td>
<td>Protective SiO₂-overcoating</td>
</tr>
<tr>
<td>Yttrium Oxide</td>
<td>YO</td>
<td>Protective Yttrium Oxide overcoating</td>
</tr>
</tbody>
</table>

* These coatings may be optimized for a specified wavelength range.
METAL OPTICS OVERVIEW

FLAT MIRRORS

SPHERICAL MIRRORS

ASPHERICAL MIRRORS

POLYGON MIRRORS & SCANNERS

SPECIAL OPTICS

UP-MILLING PARTS

DYNAMIC-AXIS-TECHNOLOGY

STRUCTURED OPTICS

COATINGS